College of Engineering Mechanical Engineering Department

Second Stage

THERMODYNAMICI

CHAPTER THREE - THE WORKING FLUID

PREPARED BY
DR. MAHMOOD SHAKER

Lecture no. 1 - How to use steam tables

Case \#1 : Saturated Steam :

Required One main property like pressure or temperature with steam saturated condition (Dry) :
Example 1 : Find u, h, and v for saturated steam at a pressure of 10 bar ?

Solution :

Ask ? What the type of the steam ?
Look to (Saturated) which mean the steam is Dry and the Dryness fraction is 1 , therefore the following can apply :
$\mathrm{u}=\mathrm{ug}, \mathrm{h}=\mathrm{hg}$, and $\mathrm{v}=\mathrm{vg}$ at steam pressure 10 bar

Lecture no. 1 - How to use steam tables-Cont.

Lecture no. 1 - How to use steam tables-Cont.

Case \#2 : Wet Steam :

Required two main properties like : pressure and temperature or pressure with dryness fraction Example 2 : Find u, h, and v for wet steam at 10 bar with dryness fraction ($x=0.85$) ?

Solution :

Ask ? What type of the steam ?
Look to (wet) which mean the steam is wet and the Dryness fraction is less than 1 , therefore the following can apply :

$$
\begin{gathered}
u=u f+x(u g-u f), \\
h=h f+x h f g \text { or } h=h f+x(h g-h f) \\
\text { and } v=x v g
\end{gathered}
$$

Lecture no. 1 - How to use steam tables-Cont.

Lecture no. 1 - How to use steam tables-Cont.

Case \#3 : Superheated Steam :

Required two main properties like pressure and temperature
Example 3 : Find u, h, and v for steam at a pressure of 10 bar and a temperature of $200^{\circ} \mathrm{C}$?
Solution :
Ask ? What type of the steam ? Here we need to make simple check:
Go to table 8 , page 13 , and look to the temperature at a pressure of 10 bar?
CHECK : $\boldsymbol{t}_{\text {sat }}=179 . \mathbf{9}^{\circ} \mathrm{C}$ (Saturation temperature)
The given $t=200^{\circ} \mathrm{C}$ which is greater than tsat. ($\mathrm{t}>\mathrm{t}$ sat.) ,
The steam is Superheated

Lecturer no. 1 - How to use steam tables-Cont.

Solution
To find enthalpy , h use table 9 page 16
$\mathrm{h}=2827 \mathrm{~kJ} / \mathrm{kg}$

													$\frac{5}{8}$						
Preminemsims	- 200	ass	ar	as	1	\checkmark	+			10	15			${ }^{5}$	\cdots	18			
5	2583 23.1	${ }_{\text {max }}^{102}$	${ }^{\text {mos }} 1$	1027	${ }^{2} 1$	19.8	3n.	312.	ग20.3	312.	mate		max	320 30	230.	304,	34,	\%949	,
	sten 2688			418.	(\%)	tos.	${ }^{412}$	+235	05,	+2x,	50. 3	104	\%\%	\%\%	+	maz			
${ }^{15}$	5716 275	ant		sps.t	5,s	526,2	3ns	990											${ }^{35}$
15				¢		43,	${ }^{143}$	dut	656.	6se.		St,		6, 6	${ }^{\text {asag }}$	bs,	${ }^{804}$	${ }^{608 .}$	\%
77	$22_{2}=2374$	330	2836	Noo	${ }^{1}$	761\%	${ }^{74.9}$	${ }^{248} 3$	74.9										
					28,	89.6	${ }_{50} 5$	$5_{\text {suta }}$	sfs.t	Hs	${ }_{\text {sfsit }}$	${ }_{\text {ase }}$		sta.	sesa			501.5	as
\pm		± 07	2038	2008															
\% 70	3) ${ }^{3} 8$ ay7 36x? 3027	$\begin{aligned} & 3075 \\ & 3005 \end{aligned}$	2038	50,	${ }^{2388}$	${ }_{\text {20, }}$	2880					1206	1 meb	(105	509	103		219	8
\%	3072097	3mb	3024	Job	305	yens	26ta	235	${ }^{278}$		3).	135	1382						
35	мา\% 3 ¢n	3 mb	123		зиб	383													4
350	17\% 377		30	308	1350				120	sag									\%89
m	, 2383828	ans	327	J270	3×1	3194	3159	3 Lus	3004	J999		zem	129		1794				
	sato atio	379,	3 n 8	3078	2,	3048	230	${ }^{3} \mathrm{zas}$	180	${ }_{0 \rightarrow 4}^{120}$	${ }_{\substack{2978 \\ \\ 078}}$	$\substack{\text { 2aso } \\ \text { zug }}$	7310	2fis	${ }_{\text {ata }}^{118}$	19\%	$\underset{\substack{18,8 \\ \\ 0 \times 8}}{ }$	row	${ }_{* s}^{+\infty}$
es		边	${ }^{378}$	smo	377	${ }_{3} 38$	3×1	3103	3 n 4	324	31to	3044	300	pest	2th	236		tes.	45
\%	32046396	206	3013	${ }^{16}{ }^{\circ}$	344	${ }^{212}$	${ }^{318}$	${ }_{3}^{2} 3$	7317	3316	313	3×7	30	2088	4460	126)	238	ı14.	45
		3 mos	${ }^{488}$	${ }^{3} 4$	40\%	$3{ }^{4} 7$	m	\pm	330	33	13	зия	зมอ	,156	,ats	200	372	± 36	5
55	357350	350	${ }^{156}$	${ }_{\text {cosp }}^{\text {20en }}$	${ }^{31} 8$	3se	339		338						127	jess	3mi	${ }_{\text {R39 }}$	${ }_{6 s}$
${ }_{650}$	${ }_{\text {anat }}$	3070	${ }_{\text {jos }}$	${ }_{18,1}$, 7 ¢o	jen	${ }_{388} 8$	374	379	374	1708	Jor	365	m	395	317	340	z109	690
		yest	${ }^{\text {gast }}$	mes	3	396	\%e9	3 toz	3\%0	\$67	${ }_{315}$	1 mm	30	mim	340	${ }^{2693}$	3610		\%
130	40454091	+4	+04	4×1	4038	421	+298	4	\pm		2ns				\%10	${ }_{3}^{2,25}$	173,		${ }_{0} 7$
	*59 159			+15															

Lecture no. 1 - How to use steam tables-Cont.

Solution cont. :
To find specific volume ,
\checkmark use table 11 page 18

Density , $\rho=4.86 \mathrm{~kg} / \mathrm{m} 3$
$v=1 / \rho=0.2057 \mathrm{~m} 3 / \mathrm{kg}$

Lecture no. 1 - How to use steam tables-Cont.

Solution cont. :

To find internal energy, u use table 12 page 19

$\mathrm{u}=2621 \mathrm{~kJ} / \mathrm{kg}$

Lecture no. 1 - How to use steam tables-Cont.

HOME WORK :

Q1 : Calculate the dryness fraction, internal energy, and specific volume for steam at 8 bar and the specific enthalpy of $2650 \mathrm{~kJ} / \mathrm{kg}$.

Q2 : Steam at a pressure of 100 bar and specific volume of $0.02242 \mathrm{~m} 3 / \mathrm{kg}$, calculate its temperature, specific enthalpy and internal energy.

Q3: Steam at 150 bar and specific enthalpy of $2979 \mathrm{KJ} / \mathrm{kg}$, determine the temperature, specific volume and the internal energy.

Q4: A vessel of a volume 0.03 m 3 contains dry saturated steam at 20 bar, calculate the mass of steam in vessel and the enthalpy of this mass.

Lecture no. 1 - How to use steam tables-Cont.

Steam at 7 bar and $250^{\circ} \mathrm{C}$ enters a pipeline and flows along it at constant pressure. If the steam rejects heat steadily to the surroundings, at what temperature will droplets of water begin to form in the vapour? Using the steady-flow energy equation, and neglecting changes in velocity of the steam, calculate the heat rejected per kilogram of steam flowing.

$$
\left(165^{\circ} \mathrm{C} ; 191 \mathrm{~kJ} / \mathrm{kg}\right)
$$

0.05 kg of steam at 15 bar is contained in a rigid vessel of volume $0.0076 \mathrm{~m}^{3}$. What is the temperature of the steam? If the vessel is cooled, at what temperature will the steam be just dry saturated? Cooling is continued until the pressure in the vessel is 11 bar; calculate the final dryness fraction of the steam, and the heat rejected between the initial and the final states.

$$
\left(250^{\circ} \mathrm{C} ; 191.4^{\circ} \mathrm{C} ; 0.857 ; 18.5 \mathrm{~kJ}\right)
$$

